0197;0195;謝酶和0195;謝產物為核心0340;0195;謝網絡是 048;胞生命活Ô05;0340;物質和!021;量基礎,腫0244; 048;胞0340;0284;變過程往往0276;隨著分子水平0340;0195;謝重塑。0363;如,0195;謝酶基因0340;突變或其表達水平0340;改變會導致 048;胞內0195;謝物含量0340;'023;著變化,這種“經典”0340;0195;謝重排現象可在腫0244;進展013;0332;揮關鍵0316;用。此ä06;,近年0358;一0418;015;研究0332;現,一0123;0195;謝酶和0195;謝產物可0197;通過“非規範”0340;兼職功!021;,在另一0491;層0629;調控腫0244;0340;0332;生和0332;展。
2021年9月16日,美國$051;ä05;法尼0126;大學教授M. C01;l01;st01; S05;mon和013;山大學013;山醫學院Ó03;教授ĝ04;超雲在Mol01;cular C01;ll,Moonl05;03;04;t05;n03; Funct05;ons o02; M01;tabol05;c Enzym01;s and M01;tabol05;t01;s 05;n Canc01;r.0332;表0102;一篇題為《該論文從多種0195;謝途徑出0332;,總結0102;0195;謝酶和0195;謝物0340;非經典功!021;0197;及它0497;對腫0244; 048;胞0340;多重調控機#069;,È06;討論0102;靶向這0123;非經典功!021;0340;抗腫0244;0274;法所0629;臨0340;機遇和挑戰。》0340;綜合文章
01
糖酵解和糖064;生等糖代謝途徑
糖代謝與細胞的能量利用、生物合成和氧化還原能力密切相關,是最重要的代謝途徑之一。糖酵解發生在細胞質中,是葡萄糖最重要的分解代謝途徑。以己糖激酶/HK催化的葡萄糖-6-磷酸/g-6-p為起點,通過多步催化反應生成一係列代謝中間產物和ATP。HK2在多種腫瘤細胞中過量表達,不僅能分解葡萄糖的經典代謝功能,還能直接結合線粒體外膜的電壓依賴性陰離子通道蛋白(VDAC),抑製線粒體釋放細胞色素c(cytochrome c),從而抑製凋亡的{04;1{05;。在缺氧狀態下,HK2可與TP53誘導的糖酵解和凋亡調節因子(TIGAR)結合形成複合物,激活TIGAR的磷酸酶活性,促進NADPH生成,從而調節線粒體的ROS水平和腫瘤細胞的存活{04;2{05;。HK2還!021;結合È06;抑#069;mTORC1,0419;進缺糖條0214;下 048;胞0340;0445;ť03;性自噬{04;3{05;。另一種糖酵解酶,磷酸甘油酸激酶1 (PGK1),廣泛表達044; 048;胞質和 048;胞核。然而,當ERK被激活時,PGK1可以轉移040;線粒體中0332;揮非經典0340;【4, 5】.功!021;。線粒體中0340;PGK1可以磷酸化丙酮酸!067;氫酶激酶1 (PDK1)0340;T338,從而抑#069;丙酮酸進入TCA循環{04;5{05;.而 048;胞核中0340;PGK1可以結合CDC7,從而調節 048;胞周期0340;{04;4{05;。在SMAD4陰性的胰腺癌細胞中,定位於細胞質的PGK1主要參與糖酵解,促進細胞增殖。然而,細胞核中的PGK1發揮轉錄調節作用,抑製E- cadherin的表達,從而促進胰腺癌的轉移{04;6{05;。據報道,丙酮酸激酶0340;M2亞型(PKM2/PKM2)具有蛋0333;激酶0340;非經典活性,可磷酸化 068;蛋0333;H3、STAT3、MLC2和bu B3{04;7-11{05;,等多種蛋白底物,也可作為轉錄調節因子結合-連環蛋白{04;12{05;.在氧化應激壓力下,PKM2可進入線粒體磷酸化BCL2,促進其穩定性,抑製凋亡的{04;13{05;。但值得注意的是,有研究小組嚐試了以磷酸烯醇式丙酮酸(PEP)為磷酸供體的激酶活性實驗,發現PKM2不能磷酸化蛋白底物。因此,關於PKM2能否作為真正的“蛋白激酶”在學術界仍然存在爭議,需要仔細確認不同實驗體係中對PKM1和M2 (PKM1/2)研究的戲劇性逆轉。
和對Warbur03;效033;0340;反ö05;){04;14{05;。糖異生(gluconeogenesis)是將乳酸(lactate)、丙酮酸(pyruvate)和甘油(glycerol)等前體代謝物轉化為葡萄糖的過程。其中,果糖-1,6-二磷酸酶1/2(fructose-1,6-bisphosphatase 1/2 , FBP1/2)催化果糖-1,6-二磷酸(fructose-1,6-bisphosphate/F-1,6-BP)生成果糖-6-磷酸(fructose-6-phosphate/F-6-P)。研究發現,FBP1的表達在腎癌和肝癌等多種腫瘤中顯著降低。FBP1是糖酵解關鍵酶磷酸果糖激酶1(phosphofructokinase/PFK1)的逆向酶,能夠通過抑製“瓦伯格效應”(Warburg Effect)而發揮抗腫瘤的作用。FBP1在腫瘤發生階段就具有重要作用,其機製是與多梳蛋白EZH2形成複合物,抑製具有促癌作用的EZH2的轉錄調控活性,因此腫瘤組織中FBP1的普遍下調加速了肝癌和腎癌的發生{04;15{05;;FBP1還!021;夠結合È06;0419;進NOTCH10340;泛 032;化和蛋0333;酶體降解,抑#069;乳腺腫0244;0332;生{04;16{05;。此外,在腎細胞中發現部分FBP1能夠入核,直接與低氧誘導因子(hypoxia inducible factor/HIF)結合並抑製其轉錄活性,從而阻滯糖酵解和細胞增殖{04;17{05;;而在肝細胞中,FBP1的缺失會引發ER應激,促使HMGB1釋放到微環境中,造成臨近的肝星形細胞產生衰老相關的分泌表型,最終加速腫瘤的發生發展{04;18{05;。除上述功能以外,FBP1還能通過抑製NK細胞激活參與調控腫瘤免疫反應{04;19{05;。值得注意的是,FBP2和FBP1具有不同的組織表達特異性,但具有類似的抑癌效果。在軟組織肉瘤中,FBP2一方麵通過經典的代謝功能抑製“瓦伯格效應”,另一方麵通過非經典作用結合c-Myc,抑製c-Myc依賴的線粒體轉錄因子A,從而導致線粒體的生物合成和呼吸活動減弱{04;20{05;。
磷酸戊糖途徑(pentose phosphate pathway/PPP)是葡萄糖分解代謝的一個重要分支通路,主要產生NADPH和核糖-5-磷酸(ribose-5-phosphate/Ru-5-P)。NADPH能夠與組蛋白去乙酰化酶3(histone deacetylase 3/HDAC3)相互作用,阻斷其與輔助因子的結合從而抑製其活性{04;21{05;;NADPH可競爭性結合NADPH氧化酶4(NADPH oxidase 4/NOX4),使細胞內部的氧化壓力處在較低水平,從而增強腫瘤細胞的化療耐藥性{04;22{05;。Ru-5-P可通過非經典作用抑製腺苷酸激活蛋白激酶(AMP activated protein kinase/AMPK)的活性,促進脂肪合成和腫瘤細胞的增殖{04;23{05;。PPP通路的中間產物γ-6-磷酸葡萄糖酸內酯(γ-6-phosphogluconolactone/γ-6-PGL)能夠結合SRC並促進PP2A的磷酸化,最終激活AMPK{04;24{05;。因此,PPP通路裏的不同代謝酶和代謝物可實現對AMPK信號的動態調控。
隨著食品工業化的普及和發展,蔗糖或其他濃縮糖漿類成分被廣泛應用於加工類食品中。這些糖類物質經消化吸收,能生成果糖和其他非葡萄糖類單糖。在攝入大量果糖的情況下,小腸無法進行完全吸收,而一部分果糖會被腸道微生物代謝生成醋酸鹽,並進一步轉化為乙酰輔酶A(acetyl-CoA)用於脂質合成{04;25{05;。進入肝髒的果糖可經己酮糖激酶(ketohexokinase/KHK)催化生成果糖-1-磷酸(fructose-1-phosphate/F-1-P),後者在醛縮酶B(alsolase B/ALDOB)的作用下生成磷酸二羥丙酮(dihydroxyacetone phosphate/DHAP)和甘油醛(glycetaldehyde),最終進入糖酵解或糖異生途徑。KHK和ALDOB都被報道具有非經典功能。硫酸軟骨素(chondroitin-4-sulfate /CHSA)是另一種可經膳食補充的糖類物質,廣泛用於改善軟骨的健康狀態。CHSA能夠促進 CK2-PTEN之間的相互作用,抑製PTEN並激活AKT信號,促進BRAF V600E突變型黑色素瘤的惡性進展{04;26{05;。
02
TCA循環和脂代謝途徑
進入線粒體的丙酮酸可代謝為乙酰輔酶A,進而和草酰乙酸縮合生成檸檬酸從而開啟TCA循環;而胞漿中的檸檬酸可再次分解產生乙酰輔酶A用於脂肪酸合成。異檸檬酸脫氫酶(isocitrate dehydrogenase /IDH)是TCA循環的關鍵代謝酶之一。IDH有三種亞型,可利用NAD 或NADP 作為輔酶,在胞漿或線粒體中催化異檸檬酸產生α-酮戊二酸(α-ketoglutarate/α-KG)。在膠質瘤(glioma)和急性髓係白血病(acute myeloid leukemia/AML)細胞中廣泛存在IDH1/2的突變,導致細胞中α-KG的含量降低,並生成新型代謝產物D-2-羥基戊二酸(D-2-hydroxyglutarate/D-2HG)。D-2HG在結構上與α-KG相似,能夠競爭性結合各種依賴α-KG的蛋白酶,如TET和JMJC家族蛋白等。因此,IDH突變可通過D-2HG顯著抑製這些酶的活性,引發DNA和組蛋白甲基化異常,進而促進腫瘤進展【27, 28】;D-2HG還能競爭性抑#069;ă03;鏈氨基酸轉氨酶1/2,0351;膠質瘤 048;胞更加0381;賴穀氨酰胺代謝,從而對穀氨酰胺酶抑#069;劑更為敏感{04;29{05;;D-2HG還可通過競爭性抑#069;FTO提升AML 048;胞整體0340;RNA m6A0462;飾水平,降0302;MYC/CEBPA mRNA穩定性,抑#069;磷酸果糖激酶和乳酸!067;氫酶0340;表達從而抑#069;AML0340;惡性進展{04;30{05;,然而,同期0340;另一項研究表明,D-2HG能夠抑#069;造血 048;胞0340;分化,0419;進AML0340;0332;生{04;31{05;。這表明D-2HG在AML的發生和發展過程中分別起到不同的作用。
與2-HG類似,延胡索酸(fumarate)和琥珀酸(succinate)也能競爭性抑製α-KG依賴的蛋白酶。例如,延胡索酸可抑製TET的酶活導致mir-200ba429的過甲基化,促進腫瘤細胞的上皮間質轉變和腫瘤轉移{04;32{05;;延胡 034;酸或琥珀酸還可競爭性抑#069;去甲基化酶KDM4A/B,阻抑DNA0340;同ě04;重 068;0462;複過程,導致基因 068;0340;不穩定;此ä06;,DNA損0663;可誘導延胡 034;酸水化酶(fumarate 04;ydratase/FH)入核,通過抑#069;KDM2B0419;進非同ě04;末端鏈接(NHEJ)Ɔ06;型0340;DNA0462;複【33, 34】。
脂肪酸合成酶(fatty acid synthase/FAS)能夠利用乙酰輔酶A和丙二酰輔酶A(malonyl-CoA)為底物合成長鏈脂肪酸,是脂肪酸合成途徑的關鍵代謝酶。如果FAS出現功能異常,丙二酰輔酶A會顯著累積,導致mTORC1丙二酰化程度增高和活性抑製,減少腫瘤血管新生{04;35{05;。此外,遊離脂肪酸須經過肉堿(L-carnitine)的轉運作用才能跨越線粒體雙層膜,進入線粒體進行β氧化(β-oxidation)。合成肉堿的關鍵代謝酶γ-丁酰甜菜堿雙加氧酶1(γ-butyrobetaine dioxygenase 1/BBOX1)能結合鈣信號受體蛋白IP3R3,通過抑製IP3R3降解維持鈣信號通路的穩定,促進三陰性乳腺癌的惡性進展{04;36{05;。磷脂酸(phosphatidic acid/PA)代謝也是脂質代謝的重要組成部分,PA能夠激活c-JUN-WEE1信號軸而調節細胞周期,促進卵巢癌細胞的化療耐藥{04;37{05;。反之,磷脂磷酸酶lipin1可通過抑製mTORC1-SREBP信號通路,調控脂質和固醇類代謝基因的轉錄{04;38{05;。在CD8 T細胞中,酰基甘油激酶(acylglycerol kinase/AGK)能夠直接結合並抑製PTEN,從而維持T細胞的活化{04;39{05;。
03
氨基酸0456;關代謝途徑
氨基酸是蛋白質的基本組成單元,同時也可參與中心碳代謝過程。例如,穀氨酰胺在穀氨酰胺酶(glutaminase /GLS)的催化下轉化為穀氨酸(glutamate),穀氨酸能進一步在穀氨酸脫氫酶(glutamate dehydrogenase/GDH)的作用下代謝為α-KG進入TCA循環{04;40{05;。在穀氨酰胺缺乏的情況下,GLS1通過促進線粒體融合抑製ROS的產生,維持腫瘤細胞增殖{04;41{05;。GDH1在低糖的條件下可被磷酸化,與RelA和IKKβ相互作用,通過激活NF-κB信號促進膠質瘤細胞存活{04;42{05;。在LKB1缺失的肺癌細胞中,GDH1生成的α-KG可直接結合並激活CamKK2,進而通過AMPK的活化抑製失巢凋亡並促進腫瘤轉移{04;43{05;。GDH產生α-KG的同時還會產生有毒的NH3,NH3需經尿素循環(urea cycle/UC)生成尿素並排出體外。許多腫瘤細胞表現出UC代謝酶的表達異常,並將氮原子轉移至嘧啶而非嘌呤合成途徑,最終導致與臨床表型相關的突變偏移{04;44{05;。p53的活性可被多種UC代謝酶抑製,包括氨基甲酰磷酸合酶1(carbamoyl phosphate synthase 1/CPS1)、鳥氨酸氨基甲酰轉移酶(ornithine transcarbamylase /OTC)和精氨酸酶1(arginase 1/ARG1),進而促進DNA的合成代謝和損傷修複{04;45{05;。
甘氨酸、絲氨酸和甲硫氨酸是細胞一碳單位的主要來源。一碳代謝主要由葉酸(folate)介導,通過葉酸循環實現同型半胱氨酸(homocysteine)的甲基化、核苷酸的生物合成以及氧化還原平衡的維持{04;46{05;。線粒體葉酸代謝的減弱可導致葉酸在胞漿中累積,抑製調控四氫葉酸(tetrahydrofolate/THF)再生的二氫蝶啶還原酶(quinoid dihydropteridine reductase/QDPR),最終導致葉酸的降解{04;47{05;。甲硫氨酸循環產生的S-腺苷甲硫氨酸(S-adenosyl methionine/SAM)是體內重要的甲基供體,決定組蛋白甲基化尤其是H3K4me3的水平,從而調控基因轉錄{04;48{05;。甲硫氨酸腺苷轉移酶(methionine adenosyltransferase/MAT)是催化SAM生成的關鍵代謝酶,其MAT2亞型主要定位於細胞核,可與轉錄因子MAF相互作用,抑製血紅素加氧酶1(heme oxygenase-1)的表達{04;49{05;。在肺癌發生過程中,促癌的MAT具有很高的活性,因此限製飲食中的甲硫氨酸含量可抑製腫瘤進展{04;50{05;。
04
蛋白翻譯後修飾
某些代謝物的重要兼有功能是為蛋白翻譯後修飾(protein post-translational modification/PTM)提供底物。甲基化(methylation)和乙酰化(acetylation)是組蛋白最常見的PTM,甲基化修飾供體大多來源於SAM,而乙酰化修飾供體大多來源於乙酰輔酶A。ATP-檸檬酸裂解酶(ATP-citrate lyase/ACLY)可將檸檬酸轉化為乙酰輔酶A,進而通過多層機製調控腫瘤進展:在葡萄糖供應不足的腫瘤細胞中,AKT促進ACLY的磷酸化和激活,維持組蛋白乙酰化水平【51{05;;在胰腺癌發展過程中,ACLY生成的乙酰輔酶A用於組蛋白乙酰化和甲羥戊酸代謝,促進腺泡-導管化生【52{05;;腫瘤細胞發生DNA損0663;時,核內ACLY生成的057;酰輔酶A能夠促進BRCA1的招募和同源重 068;修複【53{05;。
其他小分子代謝物參與蛋白的翻譯後修飾063;常有報道,如FOXO1和PGC-10517;Ô05;子附近的 068;蛋白H3K9可發生0589;羥基丁酰化,促進PCK1的轉錄和維持記憶T細胞的功能【54{05;; 068;蛋白發生乳酰化(lactylat05;on)修飾能夠激活相關基因轉錄,以應對缺氧環境和病原體入Ì05;【55{05;;琥珀酰化(succ05;nylat05;on)、052;豆酰化(crotonylat05;on)、戊二酰化(glutarylat05;on)修飾等可發揮多樣的生物學功能【56-58{05;;最近的研究發現,氨酰-tRNA合成酶能夠把與之關聯的氨基酸共價連接到底物蛋白的賴氨酸側鏈上,該活性在細胞的氨基酸感知過程中發揮重要作用。
05
機遇和挑戰
代謝酶和代謝物的“非經典”功能加速了包括癌症在內的多種疾病的發生和發展,使得這些分子成為臨床治療的潛在靶點。對這些靶點進行直接幹預可能選擇性的殺傷腫瘤細胞,或者對患者進行相應的飲食幹預可能延緩或逆轉腫瘤的進程。然而,在分子機製方麵代謝酶和代謝物的“非經典”功能仍有頗多爭議之處,特別是有相當一部分研究沒有經過體內實驗的驗證。在理想情況下,應當直接編輯基因組上的內源性酶基因,在不影響其催化活性的同時使之喪失“非經典”功能以進行體內的表型檢測;還有一部分報道的“非經典”功能並未經過其他課題組的平行驗證,結果的普適性存疑。因此,在選取合適的靶點進行臨床轉化方麵,仍然需要學界的共同努力與合作。
06
總 結
本綜述總結了代謝酶和代謝物在腫瘤中發揮“非經典”功能的一般性機製,包括:(1)代謝酶的亞細胞區域定位(subcellular compartmentalization):某些代謝酶在核轉位後可能充當轉錄因子或調節因子,而另一些代謝酶的胞內重分布可能會建立新型的蛋白-蛋白相互作用,從而調控或改變細胞信號;(2)熱點突變(hotspot mutation):如IDH突變生成D-2HG所導致的表觀遺傳重塑;(3)靶向蛋白底物(targeting protein substrates):某些代謝酶可能具有蛋白激酶活性,可直接調控蛋白底物的功能;(4)特定代謝底物的可得性(availability of particular substrates)。對代謝酶和代謝物在腫瘤中“非經典”功能的進一步解析,可為腫瘤治療策略的創新性研究夯實基礎。
原文鏈接:
https://www.cell.com/molecular-cell/fulltext/S1097-2765(21)00698-5
參考文獻
1. Pastorino, J.G. and J.B. Hoek, Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr, 2008. 40(3): p. 171-82.
2. Cheung, E.C., R.L. Ludwig, and K.H. Vousden, Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A, 2012. 109(50): p. 20491-6.
3. Roberts, D.J., et al., Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell, 2014. 53(4): p. 521-33.
4. Li, X., et al., Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Mol Cell, 2018. 72(4): p. 650-660 e8.
5. Lemonnier, F., et al., The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci U S A, 2016. 113(52): p. 15084-15089.
6. Liang, C., et al., Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut, 2020. 69(5): p. 888-900.
7. Jiang, Y., et al., PKM2 phosphorylates MLC2 and regulates cytokinesis of tumour cells. Nat Commun, 2014. 5: p. 5566.
8. Jiang, Y., et al., PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell, 2014. 53(1): p. 75-87.
9. Yang, W., et al., ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol, 2012. 14(12): p. 1295-304.
10. Yang, W., et al., PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012. 150(4): p. 685-96.
11. Gao, X., et al., Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell, 2012. 45(5): p. 598-609.
12. Yang, W., et al., Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature, 2011. 480(7375): p. 118-22.
13. Liang, J., et al., Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res, 2017. 27(3): p. 329-351.
14. Hosios, A.M., et al., Lack of Evidence for PKM2 Protein Kinase Activity. Mol Cell, 2015. 59(5): p. 850-7.
15. Liao, K., et al., A Feedback Circuitry between Polycomb Signaling and Fructose-1, 6-Bisphosphatase Enables Hepatic and Renal Tumorigenesis. Cancer Res, 2020. 80(4): p. 675-688.
16. Lu, C., et al., A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer. Mol Cancer Res, 2020. 18(5): p. 787-796.
17. Li, B., et al., Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, 2014. 513(7517): p. 251-5.
18. Li, F., et al., FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat Cell Biol, 2020. 22(6): p. 728-739.
19. Cong, J., et al., Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab, 2018. 28(2): p. 243-255 e5.
20. Huangyang, P., et al., Fructose-1,6-Bisphosphatase 2 Inhibits Sarcoma Progression by Restraining Mitochondrial Biogenesis. Cell Metab, 2020. 31(1): p. 174-188 e7.
21. Li, W., et al., NADPH levels affect cellular epigenetic state by inhibiting HDAC3-Ncor complex. Nat Metab, 2021. 3(1): p. 75-89.
22. Pan, C., et al., Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest, 2019. 129(6): p. 2431-2445.
23. Lin, R., et al., 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol, 2015. 17(11): p. 1484-96.
24. Gao, X., et al., gamma-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell, 2019. 76(6): p. 857-871 e9.
25. Zhao, S., et al., Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature, 2020. 579(7800): p. 586-591.
26. Lin, R., et al., The Dietary Supplement Chondroitin-4-Sulfate Exhibits Oncogene-Specific Pro-tumor Effects on BRAF V600E Melanoma Cells. Mol Cell, 2018. 69(6): p. 923-937 e8.
27. Chung, C., et al., Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell, 2020. 38(3): p. 334-349 e9.
28. Elia, I., et al., Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature, 2019. 568(7750): p. 117-121.
29. McBrayer, S.K., et al., Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018. 175(1): p. 101-116 e25.
30. Su, R., et al., R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell, 2018. 172(1-2): p. 90-105 e23.
31. Losman, J.A., et al., (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science, 2013. 339(6127): p. 1621-5.
32. Sciacovelli, M., et al., Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature, 2016. 537(7621): p. 544-547.
33. Sulkowski, P.L., et al., Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet, 2018. 50(8): p. 1086-1092.
34. Jiang, Y., et al., Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol, 2015. 17(9): p. 1158-68.
35. Bruning, U., et al., Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metab, 2018. 28(6): p. 866-880 e15.
36. Liao, C., et al., Identification of BBOX1 as a Therapeutic Target in Triple-Negative Breast Cancer. Cancer Discov, 2020. 10(11): p. 1706-1721.
37. Li, J., et al., DGKA Provides Platinum Resistance in Ovarian Cancer Through Activation of c-JUN-WEE1 Signaling. Clin Cancer Res, 2020. 26(14): p. 3843-3855.
38. Peterson, T.R., et al., mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 2011. 146(3): p. 408-20.
39. Gentric, G., et al., PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell Metab, 2019. 29(1): p. 156-173 e10.
40. Johnson, M.O., et al., Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018. 175(7): p. 1780-1795 e19.
41. Cai, W.F., et al., Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion. Cell Res, 2018. 28(8): p. 865-867.
42. Wang, X., et al., alpha-Ketoglutarate-Activated NF-kappaB Signaling Promotes Compensatory Glucose Uptake and Brain Tumor Development. Mol Cell, 2019. 76(1): p. 148-162 e7.
43. Jin, L., et al., The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer. Mol Cell, 2018. 69(1): p. 87-99 e7.
44. Lee, J.S., et al., Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell, 2018. 174(6): p. 1559-1570 e22.
45. Li, G., et al., p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage. Proc Natl Acad Sci U S A, 2021. 118(28): p. e2019822118.
46. Ducker, G.S. and J.D. Rabinowitz, One-Carbon Metabolism in Health and Disease. Cell Metab, 2017. 25(1): p. 27-42.
47. Zheng, Y., et al., Mitochondrial One-Carbon Pathway Supports Cytosolic Folate Integrity in Cancer Cells. Cell, 2018. 175(6): p. 1546-1560 e17.
48. Mentch, S.J., et al., Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism. Cell Metab, 2015. 22(5): p. 861-73.
49. Katoh, Y., et al., Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell, 2011. 41(5): p. 554-66.
50. Wang, Z., et al., Methionine is a metabolic dependency of tumor-initiating cells. Nat Med, 2019. 25(5): p. 825-837.
51. Lee, J.V., et al., Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab, 2014. 20(2): p. 306-319.
52. Carrer, A., et al., Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. Cancer Discov, 2019. 9(3): p. 416-435.
53. Sivanand, S., et al., Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. Mol Cell, 2017. 67(2): p. 252-265 e6.
54. Zhang, H., et al., Ketogenesis-generated beta-hydroxybutyrate is an epigenetic regulator of CD8( ) T-cell memory development. Nat Cell Biol, 2020. 22(1): p. 18-25.
55. Zhang, D., et al., Metabolic regulation of gene expression by histone lactylation. Nature, 2019. 574(7779): p. 575-580.
56. Wang, Y., et al., KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature, 2017. 552(7684): p. 273-277.
57. Tan, M., et al., Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab, 2014. 19(4): p. 605-17.
58. Tan, M., et al., Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011. 146(6): p. 1016-28.
本文到此結束,希望對大家有所幫助呢。
本文地址: http://one.zhutima.com/?id=24
文章来源:天狐定制
版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
2025-07-05 07:53天狐定制
2025-07-05 07:49天狐定制
2025-07-05 07:17天狐定制
2025-07-05 07:10天狐定制
2025-07-05 07:02天狐定制
2025-07-05 07:00天狐定制
2025-07-05 06:37天狐定制
2025-07-05 06:19天狐定制
2025-07-05 05:54天狐定制
2025-07-05 05:45天狐定制
扫码二维码
获取最新动态